Programme	B. Sc. Computer Science						
Course Code	CSC1MN10	CSC1MN102					
Course Title	Python Progr	ramming					
Type of Course	Minor						
Semester	I						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Have an und	erstanding about	algorithms and fl	owchart			
Course Summary	This course explores the versatility of Python language in programming and teaches the application of various data structures using Python.						

Course Outcomes (CO):

СО	CO Statement	Cognitiv e Level*	Knowledg e	Evaluation Tools used
CO1	Understand the basic concepts of Python programming	U	С	Instructor- created exams / Quiz
CO2	Apply problem- solving skills using different control structures and loops	Ap	P	Coding Assignments/ Code reading and review
CO3	Design simple Python programs to solve basic computational problems and acquire knowledge of Python's error handling mechanisms to effectively debug	Ap	P	Coding Assignments/ Exams

	programs			
CO4	Analyse the various data structures and operations on it using Python	An	P	Instructor-created exams / Case studies
CO5	Apply modular programming using functions	U	С	Instructor- created exams / Quiz
CO6	Identify the necessary Python packages in the domain and create simple programs with it	U, Ap	C, P	Coding

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark s
	Introduction	n to Python	12	20
	1	Features of Python, Different methods to run Python, Python IDE	2	
	2	Comments, Indentation, Identifiers, Keywords, Variables	2	
	3	Standard Data Types	2	
I	4	Input Output Functions, Import Functions, range function	1	
	5	Operators and Operands, Precedence of Operators, Associativity	2	
	6	Type Conversion, Multiple Assignment	1	

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	7	Expressions and Statements, Evaluation of Expressions	1		
	8	Boolean Expressions	1		
	Control Struct	ures	12	20	
	9	Decision Making- if statement, ifelse statement, ifelse statement, Nested if statement	5		
	10	Loops - for loop, for loop with else, while loop, while loop with else, Nested Loops	5		
II	11	Using indentation in Python to define code blocks	1		
	12	Control Statements- break, continue, pass	1		
	Data Structure	es in Python	12	20	
	13	Working with strings and string manipulation	3		
	14	List - creating list, accessing, updating and deleting elements from a list	2		
	15	Basic list operations	1		
	16	Tuple- creating and accessing tuples in python	2		
	17	Basic tuple operations	1		
III	18	Dictionary, built in methods to create, access, and modify key-value pairs			
	19	Set and basic operations on a set	1		
	Functions		9	15	
IV	20	Built-in functions - mathematical functions, date time functions, random	1		
	21	numbers			
	21	Writing user defined functions - function definition, function call, flow of execution, parameters and arguments,	6		
		return statement			
	22	Recursion.	2		
		Introduction to basic Python libraries (e.g., math, random)			

	Hands-on D	ata Structures:	30			
	Practical Applications, Case Study and Course Project					
Design	programs from t	the concepts listed below. Select the topics and programs suited				
for you	ır domain					
		Programs to:				
V	1	Run instructions in Interactive interpreter and as Python Script				
•		Perform calculations involving integers and floating point numbers using Python arithmetic operators				
		Data Structures in Python				
		String - Create a string , Indexing / Looping / Slicing				
		Lists - Create a list , Indexing /Looping				
		/ Slicing , Adding items / Modifying items / Removing items				
		Tuples - Create a tuple , Indexing / Looping / Slicing / Adding items to a tuple				
		Dictionary - Create a dictionary and access values with key / Adding a key- value pair / Adding to an empty dictionary /Modifying values in a dictionary / Removing key-value pair				
		Function				
		Call functions residing in the math module				
		Define a function for later use				
		Pass one or more values into a function				
		Return one or more results from a function				
		Case study:				
		Create a Todo List Manager where Users should be able to add, remove, and view tasks				
		 Create Student Grade Tracker: Allow users to add students, add grades for subjects, and calculate average grades. 				

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4	PSO5	PSO6	РО	PO2	PO3	PO4	PO5	PO6
	1	2	3				1					
CO 1	-	1	2	3	1	1						
CO 2	-	1	2	3	1	1						
CO 3	-	2	2	3	1	1						
CO 4	1	1	-	-	1	-						
CO 5	1	1	2	2	1	-						
CO 6	-	1	2	2	2	1						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	✓	1	✓	✓
CO 3	√		1	/
CO 4	1	✓	1	1
CO 5	✓			1
CO 6	✓			1

Reference Books:

- 1. Jose, Jeeva. Taming Python By Programming. Khanna Book Publishing, 2017. Print.
- 2. Downey, Allen. Think Python. Green Tea Press, 2nd ed. 2009

Programme	B. Sc. Computer Science					
Course Code	CSC2MN102					
Course Title	Introduction to Data So	cience				
Type of Course	Minor					
Semester	II					
Academic Level	100-199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	3	-	2	75	
Pre-requisites	Python Program Linear Algebra	-				
Course Summary	This course provides a comprehensive overview of data science, covering the various types of data and their applications. The students will acquire a deep understanding of exploratory data analysis along with hands-on implementation skills. The curriculum introduces both supervised and unsupervised and techniques of Machine learning. Additionally, the data pre-processing techniques are introduced Overall, the course provides a comprehensive understanding of the fundamental data science principles, guiding students through the data science process and illustrating practical applications.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the types of data and the applications of data science	U	С	Instructor-created exams / Quiz
CO2	Analyse the irregularities present in the data and perform data cleaning	An	С	Problem-solving assessments

CO3	Implement various visualisation techniques on different data types	Ар	Р	Modelling Assignments
CO4	Create prediction models using supervised techniques	Ар	P	Modelling Assignments//Case studies
CO5	Assess the similarity among the data using unsupervised techniques.	Ар	Р	Modelling Assignments//Case studies
CO5	Gain insights on advanced data preprocessing techniques	U	С	Instructor-created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
				(70)
I	Introd	duction to Data Science	10	10
	1	Introduction to Data: Types of Data – Structured Data, Semi- Structured Data, Unstructured Data and Data Streams, Statistical Data Types - Quantitative Data (Ratio and Interval Scale) and Qualitative Data (Nominal and ordinal)	2	
	2	Basic Methods of Data Analysis- Descriptive Data Analysis, Diagnostic Data Analysis or Exploratory Data Analysis, Inferential Data Analysis and Predictive Analysis.	1	
	3	Inferential Statistics: Statistical Inference, Population and Sample, Statistical Modeling, Probability Distributions – Normal, Uniform	3	
	4	Introduction to Data Science: Big Data and Data Science , Data Science Process	2	
	5	Applications of Data Science , Issues and challenges in Data Science	2	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

II	Explo	oratory Data Analysis	14	10
	6	Exploratory Data Analysis (EDA): Types of EDA - Univariate non-graphical, Multivariate non- graphical, Univariate graphical, and, Multivariate graphical. Methods of EDA – Descriptive Statistics and Data Visualization	5	
	7	Descriptive Statistics - Measures of Central Tendencies, Dispersion, Skewness and Kurtosis.	5	
	8	Data Visualization - Histograms , Box plots , Quantile-Quantile plots Scatter plots , Heat map, Bubble chart , Bar chart, Distribution plot , Pair plot , Line graph , Pie chart, Area chart	4	
III	Data	Preparation for Analysis	6	15
	9	Data Cleaning: Handling Missing and Noisy Data, Removing outliers	2	
	10	Data Integration	1	
	11	Data Transformation: Standardization, Normalization	2	
	12	Data Reduction: Dimensionality Reduction - Principal Component Analysis	1	
1V	Intro	15	15	
	13	Machine Learning Algorithms : Supervised Learning— Classification, Regression, Unsupervised Learning — Clustering, Dimensionality Reduction , Reinforcement Learning	3	
	14	Test /Train Split, Model Training, Bias and Variance, Overfitting and Underfitting	3	
	15	Evaluation	2	
	16	Linear Regression	1	
	17	k-Nearest Neighbors (k-NN)	1	
	18	k-means Clustering	1	
	19	Naive Bayes	1	
	20	Application of Naive Bayes - Spam Filtering	1	
	21	Singular Value Decomposition	1	
	22	Applications of Supervised, Unsupervised and Reinforcement	1	

		Learning		
V	Hand	s-on Data Structures:	30	20
	Pract			
	1	Implementation of the concepts or the algorithms learned	15	
		[Binary Classification, Linear Regression, k-NN, k-means clustering, Spam Filtering]		
	2	Case study:	5	
		Perform exploratory data analysis on a real world dataset		
		using Python. Using appropriate Python packages parse, clean and visualize the data .		
	3	Capstone/Course Project: Perform an end-to-end project of the data science process.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO	PSO	PO1	PO2	PO3	PO4	PO5	PO6
					5	6						
CO 1	3	-	-	-	-	1						
CO 2	1	-	2	-	-	1						
CO 3	-	-	2	-	-	-						
CO 4	1	2	3	3	-	1						
CO 5	1	2	3	3	-	1						
CO 6	-	-	-	-	-	2						

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1		1		1
CO 2	1	1		1
CO 3		1		1
CO 4	✓			1
CO 5	√		1	1
CO 6	✓		✓	1

References

- 1. O'Neil, Cathy, and Rachel Schutt. *Doing data science: Straight talk from the frontline*. "O'Reilly Media, Inc.", 2013.
- 2. Han, Jiawei, et al. Data Mining: Concepts and Techniques. Netherlands, Elsevier Science, 2011.
- 3. Shah, Chirag. A Hands-On Introduction to Data Science. United Kingdom, Cambridge University Press, 2020.
- 4. Chopra, Rohan, et al. Data Science with Python: Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data. United Kingdom, Packt Publishing, 2019.

Programme	B. Sc. Computer Science						
Course Code	CSC3MN202						
Course Title	Introduction to AI and	Introduction to AI and Machine Learning					
Type of Course	Minor						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Fundamental Mathematics Concepts: Sets Fundamentals of Python Programming						
Course Summary	This course provides an introduction to the ideas, techniques, and applications of artificial intelligence (AI) is given in this course. The fundamentals of knowledge representation, machine learning, and problem solving will be taught to the students.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the basic concepts of Artificial Intelligence	U	С	Instructor- created exams / Quiz
CO2	Master Problem-Solving Techniques. Apply a problem solving technique to solve standard AI problems	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Master various packages required to develop AI and machine learning applications	Ар	С	Seminar Presentation / Group Tutorial Work/ Viva Voce
CO4	Understand few AI tools and an insight to	U	С	Instructor-

	Machine learning, Deep learning concepts			created exams / Home Assignments
CO5	Implement and analyse Machine learning algorithms to solve practical problems.	Ар	P	Writing assignments/ Exams/ Practical
CO6	Apply Concepts in Real-World Projects	Ар	Р	Case Study/ mini Project

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks(70)
ı	Introd	luction to Artificial Intelligence & Problem Solving	15	12
	1	Introduction to AI – Evolution of AI, AI problems, AI Techniques, AI Applications	4	
	2	Various AI Domains (Introduction only)	2	
	3	Problem Solving Techniques - Search Algorithms, Knowledge representation and reasoning (Concepts only)	3	
	4	Problem Solving Techniques - constraint satisfaction problems, Game playing (Concepts only)	3	
	5	Problem Solving Techniques - Machine learning, Simulated Annealing (Concepts only)	3	
II	Introduction to Neural Networks			12
	6	Introduction to Artificial Neural Network	2	
	7	Understanding Brain & Perceptron Model	2	
	8	Single Layer Perceptron Model & Learning in Single layer Perceptron Model	2	
	9	Multi-Layer Perceptron Model & Learning in Multi-layer Perceptron Model	2	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Ш	Pytho	on Packages for Al	15	10
	10	Pandas	3	
	11	MatplotLib	3	
	12	Keras	3	
	13	Scikit-learn:	3	
IV		Machine Learning Fundamentals	7	16
	15	Introduction to Machine learning-	1	
	16	Applications of Machine Learning	1	
	17	Supervised machine learning- Classification, regression (concepts only)	2	
	18	Unsupervised machine learning	1	
	19	clustering, Dimensionality Reduction (concepts only)	1	
	20	Basics of reinforcement learning	1	
	21	Definition and history of deep learning	1	
	22	Key differences between traditional machine learning and deep learning	1	
V	Hand Pytho	s-on Artificial Intelligence & Machine Learning using	30	20
	Pract	ical Applications, Case Study and Course Project		
	1	1. Neural Network	20	
		Building a single layer perceptron using Keras		
		2. Multi-layer Neural Network		
		Setting up a multi-layer perceptron model		
		4. Supervised machine learning		
		Linear regression		
		Decision tree		
		5. Unsupervised machine learning		
		K means clustering		

	PCA		
	6. Feature Engineering		
	Feature selection from a dataset		
2	Case study – AI tools / Use of AI in any movie	3	
2		7	
3	Implementation of Comparison of any two machine learning algorithms on a dataset		

References

- Elaine Rich, Kevin Knight, Shivsankar B Nair, "Artificial Intelligence", Third Edition, Tata
 McGraw Hill Publisher
- Tom M. Mitchell, Machine Learning, McGraw-Hill, 1st Ed.
- Ethem Alpaydin, Introduction to Machine Learning- 3rd Edition, PHI.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	1	1	2	1						
CO 2	2	1	2	3	2	2						
CO 3	2	1	2	3	2	3						
CO 4	3	-	1	2	-	-						
CO 5	1	-	2	3	3	3						
CO 6	2	-	3	3	3	3						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal	Assignme	Practical	End Semester
	Exam	nt	Evaluation	Examinations
CO 1	✓	✓		1
CO 2	√	✓		1
CO 3	1	1		1
CO 4	✓	✓		1
CO 5	1	✓	1	1
CO 6	✓	√	✓	